Dual function of the copR gene product of plasmid pIP501.

نویسندگان

  • S Brantl
  • E G Wagner
چکیده

Replication of plasmid pIP501 is regulated at a step subsequent to transcription initiation by an antisense RNA (RNAIII) and transcriptionally by a repressor protein, CopR. Previously, it had been shown that CopR binds to a 44-bp DNA fragment upstream of and overlapping the repR promoter pII. Subsequently, we found that high-copy-number pIP501 derivatives lacking copR and low-copy-number derivatives containing copR produced the same intracellular amounts of RNAIII. This suggested a second, hitherto-unknown function of CopR. In this report, we show that CopR does not affect the half-life of RNAIII. Instead, we demonstrate in vivo that, in the presence of both pII and pIII, CopR provided in cis or in trans causes an increase in the intracellular concentration of RNAIII and that this effect is due to the function of the protein rather than its mRNA. We suggest that, in the absence of CopR, the increased (derepressed) RNAII transcription interferes, in cis, with initiation of transcription of RNAIII (convergent transcription), resulting in a lower RNAIII/plasmid ratio. When CopR is present, the pII promoter is repressed to >90%, so that convergent transcription is mostly abolished and RNAIII/plasmid ratios are high. The hypothesis that RNAII transcription influences promoter pIII through induced changes in DNA supercoiling is supported by the finding that the gyrase inhibitor novobiocin affects the accumulation of both sense and antisense RNA. The dual role of CopR in repression of RNAII transcription and in prevention of convergent transcription is discussed in the context of replication control of pIP501.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA-Binding Proteins Regulating pIP501 Transfer and Replication

pIP501 is a Gram-positive broad-host-range model plasmid intensively used for studying plasmid replication and conjugative transfer. It is a multiple antibiotic resistance plasmid frequently detected in clinical Enterococcus faecalis and Enterococcus faecium strains. Replication of pIP501 proceeds unidirectionally by a theta mechanism. The minimal replicon of pIP501 is composed of the repR gene...

متن کامل

Transcriptional repressor CopR: amino acids involved in forming the dimeric interface.

Plasmid pIP501 encoded transcriptional repressor CopR is one of the two regulators of plasmid copy number. It acts as a transcriptional repressor at the essential repR promoter. Furthermore, CopR prevents convergent transcription from the repR and the antisense promoter, thereby indirectly increasing the amount of antisense-RNA, the second regulatory component. CopR binds as a dimer to a nearly...

متن کامل

CopR binds and bends its target DNA: a footprinting and fluorescence resonance energy transfer study.

Plasmid pIP501 encoded transcriptional repressor CopR is one of the two regulators of plasmid copy number. Previous data suggested that CopR is a HTH protein belonging to a family of 578 HTH proteins (termed HTH 3-family). Only a very limited number of proteins in this family, among them lambda c1 repressor, 434 c1 repressor and P22 c2 repressor, have been characterized in detail so far. Previo...

متن کامل

A type IV-secretion-like system is required for conjugative DNA transport of broad-host-range plasmid pIP501 in gram-positive bacteria.

Plasmid pIP501 has a very broad host range for conjugative transfer among a wide variety of gram-positive bacteria and gram-negative Escherichia coli. Functionality of the pIP501 transfer (tra) genes in E. coli was proven by pIP501 retrotransfer to Enterococcus faecalis (B. Kurenbach, C. Bohn, J. Prabhu, M. Abudukerim, U. Szewzyk, and E. Grohmann, Plasmid 50:86-93, 2003). The 15 pIP501 tra gene...

متن کامل

IDENTIFICATION, ISOLATION, CLONING AND SEQUENCING APARTIALANNEXIN GENE FROM AUREOBASIDIUM PULLULANS

Background and Objectives: Annexin is the common name for genes and proteins that were identified as calcium-dependent phospholipid-binding proteins. Recently a more complex set of functions has been recognized for this superfamily of proteins including in vesicle trafficking, cell division, apoptosis, calcium signalling, mineralization, crystal nucleation inside the extracellular organelle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 179 22  شماره 

صفحات  -

تاریخ انتشار 1997